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Interface dynamics, instabilities, and solute bands in rapid directional solidification

M. Conti
Dipartimento di Matematica e Fisica, Universita’ di Camerino and Istituto Nazionale di Fisica della Materia, 62032 Camerino, It

~Received 20 January 1998!

In rapid solidification experiments on metallic alloys structures have been observed which are periodic along
the growth direction. The origin of thesebanded structureshas been ascribed to an oscillatory instability of the
solid-liquid interface characterized by large variations of the interface velocity; this instability was predicted by
several authors incorporating nonequilibrium effects into the classic Mullins-Sekerka analysis. In this paper the
rapid solidification of a binary alloy, directed by a moving temperature field, is studied with the phase-field
model; in a region of the parameter space an oscillatory instability is evidenced, which reflects in alternating
low and high concentration solute bands. The equations of the model are numerically solved to show under
what conditions~i.e., isotherm velocity and temperature gradient! the banded structure can be observed. In
many respects the results agree with the linear stability analysis of the free-boundary equations performed by
Merchant and Davis@G. J. Merchant and S. H. Davis, Acta Metall. Mater.38, 2683~1990!#; we detected also
significant deviations which trace their roots to the diffuse solid-liquid interface characteristic of the phase-field
model, opposed to the zero dimension interface of the free-boundary model.@S1063-651X~98!08807-2#

PACS number~s!: 81.10.Aj, 05.70.Ln, 64.70.Dv
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I. INTRODUCTION

In rapid solidification experiments on various binary a
loys, at growth rates close to the absolute stability lim
structures have been observed which are periodic along
growth direction@1–4#. These structures consist of a regu
succession of dark and light bands, parallel to the so
liquid front, with a band spacing ranging from 0.3 to 1.5mm.
The dark bands have a precipitate structure, either cell
dendritic or eutectic, depending on the alloy composition;
light bands are formed of precipitation-free solid solutio
with a composition that is uniform and equal to the nomin
concentration of the alloy. It has been argued@5# that planar
front growth in absolute stability is responsible for the fo
mation of the light bands.

At first, the physical origin of the banded structure w
not clearly understood, as it was not expected within
classic Mullins-Sekerka analysis@6#; however, very soon it
was realized that departures from local interface equilibriu
neglected in this former approach, could result in a ric
behavior of the dynamics of the moving interface.

Coriell and Sekerka@7# modified the linear stability analy
sis to account for nonequilibrium effects via a velocity d
pendent segregation coefficientk(v), defined as the ratio
cs /cl of the solute concentration in the growing solid to th
in the liquid at the interface. Along the same lines Merch
and Davis@8# incorporated into the problem the results of t
continuous growth model of Aziz@9# and Aziz and Kaplan
@10#, allowing the segregation coefficientk and the interface
temperatureTI to depend on the interface velocityv in a
thermodynamically consistent way. These studies led
identification of an oscillatory instability characterized by
infinite wavelength along the solid-liquid front; this instab
ity should be related to the mechanism of band formatio

The above studies assumed an infinite thermal diffusiv
resulting in a uniform temperature gradient along the grow
direction. Subsequently Huntley and Davis@11# and Karma
and Sarkissian@12,13# relaxed this hypothesis, accountin
PRE 581063-651X/98/58~2!/2071~8!/$15.00
t
he
r
-

ar
e
,
l

e

,
r

-

t
t

to

,
h

for the diffusion of the latent heat released at the interfa
The most relevant consequence of this effect is the reduc
of the parameter range where the banded structure sh
occur; moreover a restabilization effect at zero wave num
was also detected. It was also shown, in a numerical st
conducted with the Greens-function technique@13#, that the
oscillatory instability actually leads, in a nonlinear regime,
time-periodic changes in interface velocity and interfa
temperature, which reflect in periodic variations of the sol
concentration along the growth direction~the so-calledsolute
bands!.

To better understand the mechanism underlying the
mation of the banded structure, a different approach could
based on the phase-field model~PFM!. Within this method a
phase fieldf(x,t) characterizes the phase of the system
each point. A free-energy~or entropy! functional is then con-
structed, that depends onf as well as on the temperature an
concentration fieldsT,c; a (¹f)2 term accounts for the en
ergy cost associated to the solid-liquid interface. The extre
ization of the functional with respect to these variables
sults in the dynamic equations for the evolution of t
process. This approach was pioneered by Caginalp and
in a series of studies@14–16# and was initially applied to the
solidification of pure substances@17–21#; subsequently the
PFM was extended to describe the solidification of bina
alloys @22–28#. Several studies both analytical@16–18# and
numerical@19–21# established on a firm basis the notion th
the phase-field model for a pure substance, in the limit o
vanishingly small interface width, reduces to the sharp int
face diffusional equations, incorporating in a natural fash
the Gibbs-Thomson effect as well as the kinetic underco
ing of the moving interface. Moreover, the PFM for bina
alloys, in the formulation given below, accounts for noneq
librium effects as solute trapping, recovering the results p
dicted by the continuous growth model for steady grow
conditions@27#.

In the present study the rapid solidification of a bina
alloy, driven by a moving temperature field, is simulated
2071 © 1998 The American Physical Society
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2072 PRE 58M. CONTI
one dimension through the phase-field model. Due to
merical tractability, the effect of the latent heat diffusion
neglected; nevertheless we hope to capture the most rele
characteristics of the process. It will be shown that an os
latory instability arises in a region of the parameter sp
where the driving force for solidification~the dynamic un-
dercooling! is a decreasing function of the associated fl
~the growth rate!. When the operating point of the process
selected in this region, the interface velocity and tempera
undergo large oscillations originating low and high conce
tration solute bands.

The picture of the process given by the present st
agrees in many respects with the free-boundary formula
of the problem, integrated with the constitutional lawsTI(v)
andk(v) resulting from the continuous growth model; how
ever, we detected also significant deviations, which tr
their roots to the diffuse solid-liquid interface intrinsic to th
phase-field model, opposed to the zero-dimension inter
of the free-boundary equations.

The paper is organized as follows. In Sec. II the gove
ing equations of the model will be derived, through the e
tremization of an entropy functional. In Sec. III some deta
of the numerical method will be given, and in Sec. IV t
results of the numerical simulations will be presented a
discussed. The conclusions will follow in Sec. V. A bri
summary of the present work has recently been publishe
a Rapid Communication@29#.

II. DESCRIPTION OF THE MODEL

A. Derivation of the governing equations

The model describes the directional solidification of
ideal solution of componentsA ~solvent! and B ~solute!, in
terms of three fields: the scalar phase fieldf, the local solute
concentrationc, and the temperatureT. The field f is an
order parameter assuming the valuesf50 in the solid and
f51 in the liquid; intermediate values correspond to t
interface between the two phases. As a starting point an
tropy functional is defined as

S5E Fs~e,f,c!2
e2

2
u“fu2Gdv, ~1!

where integration is performed over the system volume;
last term in the integrand is a gradient correction to the th
modynamic entropy densitys, that depends on the interna
energy densitye and on the concentration and phase fie
through the thermodynamic relations:

]s

]e
5

1

T
, ~2!

]s

]c
5

mA2mB

T
, ~3!

]s

]f
52

1

T

]

]f
@~12c!mA1cmB#. ~4!

In Eqs.~3! and~4! mA andmB are the chemical potentials o
the solvent and the solute, given for an ideal solution, resp
tively, by
-
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mA5 f A~f,T!1
RT

vm
ln~12c!, ~5!

mB5 f B~f,T!1
RT

vm
ln~c!. ~6!

HereR is the gas constant andvm is the molar volume;f A is
the free energy density of the pure speciesA, taken in the
form

f A5TGA~f!1p~f!LAS 12
T

TAD2CT lnS T

TAD , ~7!

with LA andTA representing the latent heat per unit volum
and the melting temperature of pureA; C is the specific heat,
for which we assume constant and equal values for b
phases and materials. In Eq.~7! the functionGA(f) is given
by

GA~f!5
1

4
W̃Af2~12f!25W̃Ag~f! ~8!

that is a symmetric double well potential with equal minim
at f50 and 1, scaled by the positive well heightW̃A.

Choosing the functionp(f) as p(f)5f3(10215f
16f2) the condition is enforced that bulk solid and liqu
are described byf50 and 1, respectively, for every value o
temperature@18#.

Equation~7! still holds for the free energyf B if all the
material parameters labeled with the superscriptA, are re-
placed with the ones related to theB species.

A conservation law governs the solute transport:

ċ52“•Jc . ~9!

To ensure that the local entropy production is always po
tive, the solute flux can be written in a simple form as

Jc5Mc“
dS
dc

~10!

and the evolution of the phase field is given by

ḟ5Mf

dS
df

, ~11!

whereMc andMf are positive constants.
Evaluating the variational derivatives gives the dynam

equation for the phase field in the form

]f

]t
5Mf@e2¹2f2~12c!H̃A~f,T!2cH̃B~f,T!#,

~12!

where the functionH̃A(f,T) is defined as

H̃A~f,T!5G8~f!2p8~f!LA
T2TA

TTA ~13!

and a similar expression holds forH̃B(f,T).
Starting from Eqs.~3!, ~9!, and~10! and observing that
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“

mA2mB

T
5

]

]f

mA2mB

T
“f1

]

]c

mA2mB

T
“c

1
]

]T

mA2mB

T
“T, ~14!

where

]

]f

mA2mB

T
5H̃A~f,T!2H̃B~f,T!, ~15!

]

]c

mA2mB

T
52

R

vm

1

c~12c!
, ~16!

]

]T

mA2mB

T
5G̃~f,T!, ~17!

with the functionG̃(f,T) defined as

G̃~f,T!52
p~f!

T2 ~LA2LB! ~18!

the dynamic equation for the concentration field is written

]c

]t
52“•H Dcc~12c!

vm

R
@H̃A~f,T!2H̃B~f,T!#“f

2Dc“c1Dcc~12c!
vm

R
G̃~f,T!“TJ . ~19!

In Eq. ~19! the standard definition of the solute diffusivityDc
has been recovered taking

Dc5
Mc

c~12c!

R

vm
. ~20!

To allow for different diffusivities in the solid and liquid
phases, in the followingDc will be taken as

Dc5Ds1p~f!~Dl2Ds!, ~21!

Dl and Ds being the diffusivities in the liquid and in th
solid, respectively.

As we neglect the latent heat diffusion, the temperat
field is decoupled from the phase and concentration fie
and is represented as a traveling wave moving towards
positive x direction with uniform gradientG̃ and constant
velocity Ṽ0 :

]T

]t
52Ṽ0

]T

]x
52Ṽ0G̃. ~22!

The model is then synthesized through Eqs.~12!, ~19!, and
~22!.

B. The nondimensional equations and the model parameters

The problem will be treated scaling lengths to some r
erence lengthj and time toj2/Dl . Allowing Mf to depend
on the local composition as

Mf5~12c!Mf
A1cMf

B ~23!
s

e
s,
he

-

and following the lines suggested by Warren and Boettin
@28# to associate the model parameters to the material p
erties, the governing equations become

]f

]t
5@~12c!mA1cmB#@¹2f1~12c!QA~T,f!

1cQB~T,f!#, ~24!

]c

]t
5“•$l~f!“c2c~12c!l~f!@HA~f,T!2HB~f,T!#

3“f2c~12c!l~f!G~f,T!¹T%, ~25!

]T

]t
52V0

]T

]x
52V0G, ~26!

where

HA,B~f,T!5WA,B
dg~f!

df
2LA,B

vm

R

dp~f!

df

T2TA,B

TTA,B

5
vm

R
H̃A,B~f,T!, ~27!

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6&

j2LA,B

sA,BhA,B

T2TA,B

T̄I

dp~f!

df
, ~28!

G~f,T!5
vm

R
G̃~f,T!, ~29!

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D , ~30!

V05Ṽ0

j

Dl
, G5G̃j. ~31!

In Eq. ~28! sA,B, hA,B indicate the surface tension and th
interface thickness of the pure componentsA andB, respec-
tively; T̄I is the initial ~equilibrium! interface temperature
The model parametersmA,B, WA,B depend on the physica
properties of the alloy components through

mA,B5
bA,BsA,BTA,B

DlL
A,B , WA,B5

12

&

vm

R

sA,B

TA,BhA,B , ~32!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, that relates the interface undercooling to the interfa
velocity v throughv5bA,B(TA,B2TI). Notice that Eqs.~32!
were derived using the equilibrium planar solution of t
phase-field equations, which giveshA,B5eAW̃A,B; sA,B

5(eTA,B/AW̃A,B)/(6&) @28#.
To estimate the above parameters we referred to the t

mophysical properties of nickel~solvent! and copper~sol-
ute!, summarized in Table I. The length scale was fixed
j52.131024 cm; the kinetic undercooling coefficients we
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2074 PRE 58M. CONTI
fixed to bA5128.64 cm s21 K21 and bB5153.60
cm s21 K21, not far from the actual best estimates@30# and a
realistic value for the interface thickness was selected
1.6831027 cm. With these values it resultsWA50.963;
WB50.960; mA5mB5350.

III. THE NUMERICAL METHOD

The evolution of Eqs.~24!–~26! has been considered i
one spatial dimension, in the domain 0<x<xm with xm large
enough to prevent finite size effects. Fluxless boundary c
ditions for f,c and transparent conditions forT were im-
posed at the domain’s walls. To discretize the equations
ond order in space and first order in time finite-differen
approximations were utilized; then, an explicit scheme w
employed to advance the solution forward in time. To ens
an accurate resolution of both the phase field and conce
tion profiles, the grid spacing was selected asDx54
31024, that is one-half the nominal interface thickness
time stepDt52310210 was required for numerical stability
To verify the accuracy of the numerical scheme, at each t
step the solute conservation was checked and in all the s
lations was verified within 0.001%. The initial temperatu
profile is defined as

T~x,0!5T̄I1G~x2x0!, ~33!

with a phase boundary at temperatureT̄I separating the solid
region (x,x0 ,f50) and the liquid region (x.x0 ,f51).
The initial solute concentration is set to the equilibrium v
ues in the two phases. Then the temperature profile is pu
towards the positivex direction, starting the solidification
process.

IV. NUMERICAL RESULTS

A. The basic steady state

At first we characterized the solidification process
steady conditions, determining the two constitutional la
k(v) and TI(v) which describe the interface dynamics; t
stability of this basic state will be investigated in the ne
subsection. Some of the results reported in the follow
were published elsewhere@27#, and are included here for th
sake of completeness.

The initial concentration of the alloy was set toc2`

50.056 09 in the solid phase andc1`50.070 68 in the liq-
uid phase, corresponding to an equilibrium temperatureT̄I
51706.06 K. To force stable growth we chose a high va
of the temperature gradient (G5200 K); with this value af-
ter an initial transient solidification proceeded at const

TABLE I. Material parameters for the Ni-Cu alloy.

Nickel Copper

Tm (K) 1728 1358
L (J/cm3) 2350 1728
vm (cm3/mole)a 7.0 7.8
s (J/cm2) 3.731025 2.931025

Dl (cm2/s) 1025 1025

aAn average value of 7.4 has been taken.
s
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s
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e
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rate and with uniform concentrationc1` in the solid phase.
The solute segregation on the moving front was evalua
computing the minimum and maximum valuescs* , cl* of the
solute concentration across the interface, and defining
partition coefficient ask(v)5cs* /cl* ; the interface tempera
ture was determined interpolating the temperature field
x(f50.5,t).

To compare our findings with the predictions of the co
tinuous growth model~CGM! we recall that the latter gives
the dependence of the partition coefficient on the grow
velocity in the form

k~v !5
ke1v/vd

11v/vd
, ~34!

with ke the equilibrium value for a stationary interface, an
vd a characteristic velocity describing the diffusional solu
redistribution across the moving front;vd is generally ex-
pressed asvd5D/a, whereD is an interface diffusivity and
a is the width of the phase transition layer. In the sam
model the dependence of the interface temperature on ve
ity is given, for dilute alloys, by

TI~v !5TA1
mlcl

12ke
$12k1@k1~12k!g# ln~k/ke!%2

v
bA ,

~35!

whereml is the slope of the equilibrium liquidus line; th
parameterg describes the dissipation of free energy due
solute drag across the interface@31#: this phenomenon is
completely neglected withg50 and accounted for withg
51.

Figure 1 shows the solute profile normalized asc̄(x)
5@c(x)2c1`#/(cl*2c1`), for V05800. The graph displays in
an instructive way the diffuse interface nature of the pres
model: we observe that the transition ofc̄(x) takes place
within a length that is approximatelya5231023; with D
being bounded asDs,D,Dl , we expect a value of
vd,500. This prediction is confirmed in Fig. 2 where th
partition coefficient is represented versus the growth velo
v; the solid dots refer to the results of the present simu

FIG. 1. Normalized concentration profile forV05800; xI rep-
resents the position of the solid-liquid interface.
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tions, whereas the continuous line was drawn through
~34!. Using vd as an adjustable parameter, the best fit w
found atvd5290.

Figure 3 shows the numerical results for theTI(v) depen-
dence; on the same graph we superimposed the curves
puted through Eq.~35! corresponding tog50 ~neglecting
solute drag!, g51 ~complete solute drag!, and to the best fit
valueg50.65. Notice that the phase-field model sugges
picture of the solidification process characterized bypartial
solute drag; this feature can be related to the diffuse interfa
nature of the model@10,31#; it should also be observed tha
experimental evidence of partial solute drag has been fo
in an experimental study on dendritic solidification@32#.

B. The oscillatory instability

TheTI(v) curve shown in Fig. 3 exhibits a nonmonoton
behavior: due to suppression of solute partitioning~and to

FIG. 2. Partition coefficientk(v) versus the front velocity. The
solid dots correspond to the valuescs* /cl* of the present simula-
tions; the solid line is drawn through Eq.~34! with vd5290~best fit
value!.

FIG. 3. Interface temperature versus interface velocity
steady growth. Solid dots: results of the present model. The pre
tions of the continuous growth model are given by the so
dashed, and dotted lines forg50, 0.65, and 1, respectively.
q.
s

m-

a

e

nd

the reduction of solute concentration on the liquid side of
interface!, at low velocitiesTI(v) first rises, then falls with
increasingv reflecting the increasing undercooling requir
to advance the solidification front. In the range of positi
slope the driving force for the process~i.e., the thermody-
namic undercooling! is a decreasing function of the assoc
ated flux~the growth rate! and instabilities must be expecte
Two different pictures can arise, depending on the selec
isotherm velocity and the restabilizing effect of the tempe
ture gradient. Figure 4 shows the interface velocity ver
time, for V051200 andG540 K. The initial condition is
rapidly reabsorbed; after a few damped oscillations the s
tem settles on its steady state withv5V0 . A totally different
dynamic behavior emerges from Fig. 5, where the interf
velocity and temperature are represented versus time,
V05700 andG540 K: the process never reaches a stea
regime, and the interface velocity continuously oscilla
around the average valueV0 . These results agree with pre
vious findings of Merchantet al. @33# and Brattkus and
Meiron @34# which predicted relaxation oscillations of th

r
ic-
,

FIG. 4. The interface velocity versus time. The isotherm velo
ity is V051200 and the temperature gradient isG540 K.

FIG. 5. Interface velocity~dotted line! and temperature~solid
line! versus time. The isotherm velocity isV05700 and the tem-
perature gradient isG540 K.
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2076 PRE 58M. CONTI
interface speed starting from the free-boundary diffusio
formulation of the problem. The orbit followed by the sy
tem in theTI ,v plane is shown in Fig. 6~solid dots!. The
vertical line indicates the isotherm velocityV05700; on the
same graph the solid line is the steadyTI(v) curve, and the
diamonds represent the data calculated along the predic
of the CGM, i.e., through Eqs.~34! and ~35! with g50.65
and using the actual values ofcl* for the solute concentration
in the liquid. For most of the cycle the interface velocity
lower thanV0 and the interface cools down; then the or
traverses the steadyTI(v) curve at pointA, where the front
velocity is not far fromV0 and with a strong acceleratio
reaches pointB on the stable branch. Here the interface v
locity is much higher thanV0 and the interface warms up
solidification is decelerated and the operating point shifts
C. Notice that the shape of the cycle can be modified wh
the latent heat diffusion is taken into account@13#. The orbit
predicted by the CGM closely resembles the actual cy
performed by the solidification front; however, some diffe
ences arise which are discussed in the following. The c
tinuous growth model, if not regarded from a proper persp
tive, can originate ambiguities and inconsistent results
supplies the nonequilibrium conditions needed to solve
free-boundary diffusional problem; these conditions are
plied on the moving front that is treated, under all respe
as a zero-dimension interface. But the model itself is intr
sically based on a diffuse interface picture of the solidific
tion process, where it describes the solute reequilibra
through the finite diffusional velocityvd . This ambiguity,
accurately clarified in the original papers of Aziz@9#, Aziz
and Kaplan@10#, and Aziz and Boettinger@31#, was in the
past at the origin of some misunderstandings. Equations~34!
and~35!, derived for steady growth, are generally assumed
work even for a time dependent process; on the cont
solute relaxation across the interface is not instantaneous
takes a time of the ordert;a2/D5a/vd , and conditions
~34! and ~35! give an unrealistic picture of the interface d

FIG. 6. The orbit followed by the process in theTI , v plane; the
isotherm velocity is indicated by the vertical line (V05700); G
540 K. Solid dots: results of the present simulation; diamon
predictions of the continuous growth model assumingcl5cl* and
g50.65. The solid line indicates the steadyTI(v) curve. The mean-
ing of the pointsA,B,C is illustrated in the text.
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namics when the transient characteristic time is of the or
of t ~or the characteristic frequency is of the order of 1/t!.
This is precisely the situation depicted in Figs. 5 and 6:t is
here of the order of 105, and the fast transients shown in Fi
5 exhibit Fourier components comparable with 1/t; then
conditions~34! and ~35! should not be consistent with th
results of the present model. This suggestion is confirmed
Fig. 7, where we have compared the cycle described by
ratio cs* /cl* ~solid dots! with the partition coefficientk(v)
predicted by Eq.~34! ~solid line!. We note thatcs* /cl* is not
a uniquely defined function of the interface velocity, sho
ing a hysteretic behavior and deviating fromk(v) during a
significant portion of the cycle.

Due to the above arguments, we do not expect a sh
agreement between our results and the predictions of the
ear analysis performed by Merchant and Davis@8#. Assum-
ing a periodic perturbation parallel to the advancing front
the form exp(iqy1vt) they determined the region in the pa
rameter space where the oscillatory instability should ar
i.e., where Re(v).0 andv I5Im(v)Þ0; the dependence o
the oscillation frequency on the relevant parameters
characterize the process was also determined. Their re
~corrected to account for the partial solute drag effect! are
compared to our present simulations in Fig. 8, where
oscillation frequency is represented versus the isotherm
locity, with G540 K. The solid line corresponds to the pr
dictions of the linear analysis~due to an erroneous estimatio
of ml , in a previous paper@29# these data were incorrectl
reported!; the solid dots give the results of our simulation
The instability range is bounded between 150,V0,1200 for
the linear analysis and between 150,V0,1000 for the
present model. It is worth observing that, as it could ha
been expected, the agreement is better at low frequency

Figure 9 showsv I versus the temperature gradientG,
with V05600; the linear analysis predicts higher frequenc
and a more extended instability range: oscillations are s
pressed atG.70 K in the present simulations, and atG
.120 K for the linear analysis.

:

FIG. 7. Partition coefficientk(v) versus the front velocity, with
V05700 andG540 K. The solid dots correspond to the valu
cs* /cl* of the present simulations; the solid line is drawn throu
Eq. ~34! with vd5290 ~best fit value!.
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The oscillating behavior of the interface dynamics ha
strong influence on the structure of the solidified alloy.
Fig. 10 we show the time dependence ofcs* andcl* ; on the
same graph the interface velocity is also shown. HereV0
5700 andG540 K, corresponding to Re(v).0. We ob-
serve that at low velocitiescs* reaches its minimum; then th
interface accelerates, solute partitioning is suppressed,
cs* increases. Notice that due to the depletion of solute ah
of the interface~see thecl* curve! the maximum ofcs* an-
ticipates the maximum ofv. Then, as velocity diminishes
solute segregation becomes again effective andcs* decreases

In Fig. 11 we show the concentration profile withV0
5700 andG540. We observe low and high concentratio
solute bands which reflect the periodic variations ofcs* (t).
The wavelength of the solute concentration profile has b

FIG. 8. The oscillation frequency versus the isotherm veloc
G540 K. Solid line: as predicted by the linear stability analys
Solid dots: solutions found in the present simulations. The insta
ity range is bounded between 150,V0,1200 for the linear analysis
and between 150,V0,1000 for the present model.

FIG. 9. The oscillation frequency versus the temperature gr
ent; the isotherm velocity isV05600. Solid line: as predicted by th
linear stability analysis. Solid dots: solutions found in the pres
simulations. The instability range extends up toG570 K in the
present simulations, and toG5120 K for the linear analysis.
a

nd
ad

n

estimated asl50.0724, which is practically coincident with
the expected value 2pV0 /v I50.0727.

V. CONCLUSIONS

In summary, we addressed rapid directional solidificat
through the phase-field model, which provides an effici
way to treat nonequilibrium effects as solute trapping a
kinetic undercooling of the solid-liquid interface. In stead
conditions we recovered with good agreement the result
the free-boundary equations, with interface conditions giv
by the continuous growth model; the dissipation of free e
ergy at the growing front seems to be properly describ
assuming partial solute drag. In a region of the parame
space the interface dynamics enters an oscillatory reg
characterized by periodic variations of the growth rate. He
due to the fast transients involved, the interface conditio
provided by the CGM no longer work, and the results of t
phase-field simulations deviate, to some extent, from the
dictions of the free-boundary model.

;
.
l-

i-

t

FIG. 10. Time variation ofcl* ~solid dots!, cs* ~solid line!, and
the interface velocity~dotted line!. The isotherm velocity isV0

5700 and the temperature gradient isG540 K.

FIG. 11. Solute concentration profile along the growth directio
The isotherm velocity isV05700, and the temperature gradient
G540 K.
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Due to numerical tractability, in this study we neglect
the latent heat released at the solid-liquid interface, assum
an infinite thermal diffusivity. As shown by Karma an
Sarkissian@13#, relaxing this approximation leads to an in
crease of the effective temperature gradient probed by
advancing front, and to a reduction of the parameter ra
where the oscillatory instability should be expected; nonet
less, the basic mechanism underlying the formation of so
z,

r.

B

z,

-
l.

R

ng

e
e
-

te

bands should have been properly evidenced. In view of
ture extensions and refinements in this subject, it is wo
noting that the phase-field model allows an easy descrip
of rapid solidification processes even for concentrated s
tions, with no limitations due to the actual shape of the al
phase diagram, while at present the free-boundary appro
can only be applied to very dilute solutions, when the all
phase diagram can be conveniently linearized.
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